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GPs and Computational
Complexity
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The problem with GPs
Unless you are lucky (or clever), Gaussian process models are difficult to
scale to large problems. For a Gaussian process :∼ �(μ, Σ)y

n×1

Want to sample ?y

μ + Chol(Σ) × Z with ∼ �(0, 1) � ( )Zi n3

Evaluate the (log) likelihood?

− log |Σ| − (x − μ (x − μ) − log 2π � ( )1
2

1
2

)′
Σ
−1 n

2
n3

Update covariance parameter?

{Σ = exp(−{d ϕ) + � ( )}ij σ2 }ij σ2
n 1i=j n2
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A simple guide to computational complexity
 

 - Linear complexity

Go for it!
 

� (n)

 - Quadratic complexity

Pray
 

� ( )n2

 - Cubic complexity

Give up

� ( )n3
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How bad is the problem?
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Practice - Migratory Model Prediction
After fitting the GP need to sample from the posterior predictive
distribution at  locations∼ 3000

∼ � ( + ( − ),  − )yp μp ΣpoΣ−1
o yo μo Σp ΣpoΣ−1

o Σop

Step CPU (secs)

1. Calc , , 1.080

2. Calc 0.467

3. Calc 0.049

4. Calc Allele Prob 0.129

Total 1.732

Total run time for 1000 posterior predictive draws:

CPU (28.9 min)

Σp Σpo Σo

chol( − )Σp ΣpoΣ−1
o Σop

+ chol( ) × Zμp|o Σp|o
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A bigger hammer?
Step CPU (secs) CPU+GPU (secs) Rel. Perf

1. Calc. , , 1.080 0.046 23.0

2. Calc. 0.467 0.208 2.3

3. Calc. 0.049 0.052 0.9

4. Calc. Allele Prob 0.129 0.127 1.0

Total 1.732 0.465 3.7

Σp Σpo Σp

chol( − )Σp ΣpoΣ−1
o Σop

+ chol( ) × Zμp|o Σp|o

 

Total run time for 1000 posterior predictive draws:

CPU (28.9 min)

CPU+GPU (7.8 min)

Benchmarks based on decade old consumer hardware
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Cholesky CPU vs GPU (P100)

Benchmarks based on ~5 year old server hardware
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Relative Performance
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Aside (1) - Matrix Multiplication (P100)
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Aside (2) - Memory Limitations
A general covariance is a dense  matrix, meaning it will require 
64-bits to store.

n × n ×n2
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Other big hammers
bigGP is an R package written by Chris Paciorek (UC Berkeley), et al.

Specialized distributed implementation of linear algebra operation for GPs

Designed to run on large super computer clusters

Uses both shared and distributed memory

Able to fit models on the order of k (32 GB Cov. matrix)n = 65
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More scalable solutions?
Spectral domain / basis functions

Covariance tapering

GMRF approximations

Low-rank approximations

Nearest-neighbor models
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Low Rank Approximations

18Sta 344 - Fall 2022



Low rank approximations in general
Lets look at the example of the singular value decomposition of a matrix,

where  are the left singular vectors,  the right singular vectors, and 
the singular values. Usually the singular values and vectors are ordered
such that the singular values are in descending order.

=M
n×m

U
n×n

diag(S)
n×m

V t
m×m

U V S

The Eckart–Young theorem states that we can construct an
approximatation of  with rank  by setting  to contain only the 
largest singular values and all other values set to zero.

M k S k

M̃ 
n×m

= U
n×n

diag( )S 
n×m

V t
m×m

= Ũ 
n×k

diag( )S 
k×k

Ṽ t
k×m
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Example

M

U = V

S

= = U diag(S)

⎛

⎝

⎜
⎜
⎜
⎜

1.000
0.500
0.333
0.250

0.500
0.333
0.250
0.200

0.333
0.250
0.200
0.167

0.250
0.200
0.167
0.143

⎞

⎠

⎟
⎟
⎟
⎟

V t

=

⎛

⎝

⎜
⎜
⎜
⎜

−0.79
−0.45
−0.32
−0.25

0.58
−0.37
−0.51
−0.51

−0.18
0.74

−0.10
−0.64

−0.03
0.33

−0.79
0.51

⎞

⎠

⎟
⎟
⎟
⎟

= ( )1.50 0.17 0.01 0.00
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Rank 2 approximation

M = ( )( )
⎛

⎝

⎜
⎜
⎜
⎜

−0.79
−0.45
−0.32
−0.25

0.58
−0.37
−0.51
−0.51

⎞

⎠

⎟
⎟
⎟
⎟

1.50
0.00

0.00
0.17

−0.79
0.58

−0.45
−0.37

−0.32
−0.51

−0.25
−0.51

=

⎛

⎝

⎜
⎜
⎜
⎜

1.000
0.501
0.333
0.249

0.501
0.330
0.251
0.203

0.333
0.251
0.200
0.166

0.249
0.203
0.166
0.140

⎞

⎠

⎟
⎟
⎟
⎟

M =

⎛

⎝

⎜
⎜
⎜
⎜

1.000
0.500
0.333
0.250

0.500
0.333
0.250
0.200

0.333
0.250
0.200
0.167

0.250
0.200
0.167
0.143

⎞

⎠

⎟
⎟
⎟
⎟
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Approximation Error
We can measure the error of the approximation using the Frobenius norm,

ǁM − =M̃ ǁ F ( ( − )∑
i=1

m

∑
j=1

n

Mij M ij)2
1/2

M − =M̃ 

⎛

⎝

⎜⎜⎜⎜

0.00022
−0.00090
0.00012
0.00077

−0.00090
0.00372

−0.00053
−0.00317

0.00012
−0.00053
0.00013
0.00039

0.00077
−0.00317
0.00039
0.00277

⎞

⎠

⎟⎟⎟⎟

ǁM − = 0.00674M ǁ F
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Strong dependence
For a covariance matrix with a large effective range,
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Weak dependence
For a covariance matrix with a large effective range,
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How does this help?
There is an immensely useful linear algebra identity, the Sherman-
Morrison-Woodbury formula, for the inverse (and determinant) of a
decomposed matrix,

M
n×m

−1 = ( +   )A
n×m

U
n×k

S
k×k

Vt
k×m

−1

= − U .A−1 A−1 ( + U)S−1 V tA−1 −1 V tA−1

How does this help?

Imagine that , then it is trivial to find .

 is  which is hopefully small, or even better .

 is  which is also small.

A = diag(A) A−1

S−1 k × k S = diag(S)

( + U)S−1 V tA−1 k × k
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Aside - Determinant
Remember for any MVN distribution when evaluating the likelihood

we need the inverse of  as well as its determinant.

− log |Σ| − (x − μ (x − μ) − log 2π1
2

1
2

)′
Σ
−1 n

2

Σ
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Low rank approximations for GPs
For a standard spatial random effects model,

if we can replace  with a low rank approximation of the form 
 where

 is ,

 is , and

 or a similar diagonal matrix

y(s) = x(s) β + w(s) + ϵ, ϵ ∼ N(0,  I)τ2

w(s) ∼ �(0,  Σ(s)), Σ(s, ) = ρ(s, |θ)s′ σ2 s′

Σ(s)
Σ(s) ≈ U S U t

U n × k
S k × k
A = Iτ2
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Predictive Processes
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Gaussian Predictive Processes
For a rank  approximation,

Pick  knot locations 

k

k s⋆

Calculate knot covariance, , and knot cross-covariance, Σ( )s⋆ Σ(s, )s⋆

Approximate full covariance using

Σ(s) ≈ .Σ(s, )s⋆

n×k
Σ(s⋆ )−1

k×k
Σ( , s)s⋆

k×n
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PPs systematically underestimates variance ( ) and inflate ,
Modified predictive processs corrects this using

σ2 τ2

Σ(s) ≈Σ(s, ) Σ( Σ( , s)s⋆ s⋆ )−1 s⋆

+ diag(Σ(s) − Σ(s, ) Σ( Σ( , s)).s⋆ s⋆ )−1 s⋆

Banerjee, Gelfand, Finley, Sang (2008); Finley, Sang, Banerjee, Gelfand (2008)
31Sta 344 - Fall 2022



Example
Below we have a surface generate from a squared exponential Gaussian
Process where

{Σ = exp(−(ϕ d ) + I}ij σ2 )2 τ2

= 1 ϕ = 9 = 0.1σ2 τ2
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Predictive Process Model Results
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Performance
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Parameter Estimates
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Random Projections
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Low Rank via Random Projections
�. Starting with an matrix .A

m×n

�. Draw a Gaussian random matrix .Ω
n×k+p

�. Form  and compute its QR factorization Y = A Ω Y = Q R

�. Form .B = AQ′

�. Compute the SVD of .B = SÛ  V ′

�. Form the matrix .U = Q Û 

�. Form = USÃ  V ′
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Resulting approximation has a bounded expected error,

E|A − US ≤ [1 + ] .V ′ǁ F
4 k + p√

p − 1
min(m, n)√ σk+1

Halko, Martinsson, Tropp (2011)
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Random Matrix Low Rank Approxs and GPs
The preceding algorithm can be modified slightly to take advantage of the positive definite
structure of a covariance matrix.

�. Starting with an  covariance matrix .

�. Draw Gaussian random matrix .

�. Form  and compute its QR factorization 

�. Form the .

�. Compute the eigen decomposition of .

�. Form the matrix .

Once again we have a bound on the error,

n × n A

Ω
n×k+p

Y = A Ω Y = Q R

B = A QQ′

B = SÛ  Û ′

U = Q Û 

EǁA − US ≲ c ⋅ .U ′ǁ F σk+1

Halko, Martinsson, Tropp (2011), Banerjee, Dunson, Tokdar (2012)
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Low Rank Approximations and GPUs
Both predictive process and random matrix low rank approximations are
good candidates for acceleration using GPUs.

Both use Sherman-Woodbury-Morrison to calculate the inverse (involves
matrix multiplication, addition, and a small matrix inverse).

Predictive processes involves several covariance matrix calculations
(knots and cross-covariance) and a small matrix inverse.

Random matrix low rank approximations involves a large matrix
multiplication ( ) and several small matrix decompositions (QR,
eigen).

A Ω
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Comparison 
n = 15, 000, k = {100,… , 4900}
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Rand. Projection LR Depositions for Prediction
This approach can also be used for prediction, if we want to sample

then

because  since  is an orthogonal matrix.

y ∼ �(0, Σ)

Σ ≈ US = (U )(UU t S1/2U t S1/2U t)t

= (U ) × Z where ∼ �(0, 1)ypred S1/2 U t Zi

U = IU t U

Dehdari, Deutsch (2012)
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n = 1000, p = 10000
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