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EDA and GPs
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Variogram
When fitting a Gaussian process model, it is often difficult to fit the
covariance parameters (hard to identify). Today we will discuss some EDA
approaches for getting a sense of the values for the scale, range and
nugget parameters.

From the spatial modeling literature the typical approach is to examine an
empirical variogram, first we will define the theoretical variogram and its
connection to the covariance.

Variogram:

where  is known as the semivariogram.

2γ( , ) = Var(y( ) − y( ))ti tj ti tj

γ( , )ti tj
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Properties of the Variogram / Semivariogram
are non-negative - γ( , ) ≥ 0ti tj

are equal to 0 at distance 0 - γ( , ) = 0ti ti

are symmetric - γ( , ) = γ( , )ti tj tj ti

if observations are independent 
2γ( , ) = Var(y( )) + Var(y( ))  for all i ≠ jti tj ti tj

if the process is not stationary 
2γ( , ) = Var(y( )) + Var(y( )) − 2 Cov(y( ), y( ))ti tj ti tj ti tj

if the process is stationary 

2 γ( , ) = 2 Var(y( )) − 2 Cov(y( ), y( ))ti tj ti ti tj
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Connection to Covariance
Assuming a squared exponential covariance structure,

2γ( , )ti tj
γ( , )ti tj

= 2Var(y( )) − 2 Cov(y( ), y( ))ti ti tj
= Var(y( )) − Cov(y( ), y( ))ti ti tj
= − exp ( − (| − | l )σ2 σ2 ti tj )2
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Covariance vs Semivariogram - Exponential
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Covariance vs Semivariogram - Sq. Exp.
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Nugget variance
Very often in the real world we will observe that  is not true -
there will be an initial discontinuity in the semivariogram at .

Why is this?

γ( , ) = 0ti ti
| − | = 0ti tj

 

We can think about Gaussian process regression in the following way,

where

y(t) = μ(t) + w(t) + ϵ(t)

μ(t)
w(t)

ϵ(t)

= Xβ

∼ N(0, Σ)

N(0, )∼
iid σ2

w
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Implications
With the inclusion of the  terms in the model we now have,ϵ(t)

Var(y( ))ti
Cov(y( ), y( ))ti tj

= +σ2
w Σii

= Σij

 

Therefore, for a squared exponential covariance model with a nugget
component the semivariogram is given by,

γ( , ) = ( + ) − exp(−(| − | l )ti tj σ2 σ2
w σ2 ti tj )2
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Semivariogram features
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Empirical Semivariogram
We will assume that our process of interest is stationary, in which case we
will parameterize the semivariagram in terms of .

Empirical Semivariogram:

d = | − |ti tj

(d) = (y( ) − y( )γ̂ 
1

2 N(d) ∑
| − |∈(d−ϵ,d+ϵ)ti tj

ti tj )2

Practically, for any data set with  observations there are  possible

data pairs to examine. Each individually is not very informative, so we
aggregate into bins and calculate the empirical semivariogram for each
bin.

n ( ) + nn
2
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Empirical semivariogram of WN
Where ,= 1σ2

w
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Empirical Variogram of GP w/ Sq Exp
Where , , and ,= 2σ2 l = 5 = 1σ2

w
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Empirical Variogram of GP w/ Exp
Where , , and ,= 2σ2 l = 6 = 1σ2

w
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From last time
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Empirical semivariogram - no bins / cloud
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Empirical semivariogram (binned)
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Empirical semivariogram (binned w/ size)
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Theoretical vs empirical semivariogram
After fitting the model last time we came up with a posterior mean of 

, , and  = 0.18 for a square exponential covariance.= 1.67σ2 l = 8.33 σ2
w

Cov(d)

γ(h)

= exp ( − (d l ) +σ2 )2 σ2
w1h=0

= ( + ) − exp ( − (h l )σ2 σ2
w σ2 )2

= (1.67 + 0.18) − 1.67 exp ( − (8.33 h ))2
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Durham Average Daily
Temperature

23Sta 344 - Fall 2022



Temp Data
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Empirical semivariogram
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Model
What does the model we are trying to fit actually look like?

where

y(t) = μ(t) + w(t) + ϵ(t)

μ(t)

w(t)

ϵ(t)

{Σ}ij

= β0
∼ ��(0, Σ)
∼ �(0, )σ2

w

= Cov( , ) = exp(−(| − | l )ti tj σ2 ti tj )2
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BRMS Model
 

 

 

 

library(brms)1

( m = brm(2

    avg_temp ~ 1+ gp(week), data=temp,3

    cores = 4, refresh=04

) )5

 Family: gaussian  

  Links: mu = identity; sigma = identity  

Formula: avg_temp ~ 1 + gp(week)  

   Data: temp (Number of observations: 156)  

  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 

         total post-warmup draws = 4000 

 

Gaussian Process Terms:  

               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 

sdgp(gpweek)      14.41      6.80     2.56    19.33 4.69        4       12 

lscale(gpweek)     0.22      0.10     0.05     0.33 3.44        4       12 
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BRMS Alternatives
The BRMS model (and hence Stan) took >10 minutes (per chain) to
attempt to fit the model and failed spectacularly.

We could improve things slightly by tweaking the priors and increasing
iterations but this wont solve the slowness issue.

The stop gap work around - using 

Interface is old and clunky (inputs and outputs)

Designed for spatial GPs

Super fast (~10 seconds for 20k iterations)

I am working on a wrapper to make the interface / usage not as terrible
(more next week)

spBayes
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https://cran.r-project.org/web/packages/spBayes/index.html


Fitting a model
 

 

 

 

 

 

 

 

 

 

 

 

(m = gplm(1

  avg_temp~1, 2

  data = d, coords = cbind(d$week, 0),3

  starting=list(4

    "phi"=sqrt(3)/4, "sigma.sq"=1, "tau.sq"=15

  ),6

  priors=list(7

    "phi.unif"=c(sqrt(3)/52, sqrt(3)/1),8

    "sigma.sq.ig"=c(2, 1),9

    "tau.sq.ig"=c(2, 1)10

  ),11

  thin=1012

) )13

# A gplm model (spBayes spLM) with 4 chains, 4 variables, and 4000 iterations.  

# A tibble: 4 × 10 

  variable    mean  median      sd     mad      q5     q95  rhat ess_b…¹ ess_t…² 

  <chr>      <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl> <dbl>   <dbl>   <dbl> 

1 sigma.sq 2.58e+2 2.18e+2 1.50e+2 9.85e+1 1.11e+2 5.34e+2 1.00    2837.   3108. 

2 tau.sq   4.73e+1 4.69e+1 5.56e+0 5.42e+0 3.89e+1 5.68e+1 0.999   4055.   3893. 

3 phi      6.09e-2 6.00e-2 1.05e-2 9.89e-3 4.58e-2 7.91e-2 1.00    2988.   3158. Sta 344 - Fall 2022



4 (Interc… 5.76e+1 5.77e+1 6.75e+0 6.12e+0 4.64e+1 6.83e+1 1.00    4081.   3535. 

# … with abbreviated variable names ¹ ess_bulk, ² ess_tail
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Parameter posteriors
plot(m)1
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Fitted model
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Forecasting
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Empirical semivariogram vs. model
From the model summary we have the following,

posterior means: , , 

posterior medians: , , 

= 258σ2 = 47.3σ2
w l = 0.06

= 218σ2 = 46.9σ2
w l = 0.06
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