ARIMA Models

Lecture 09

Dr. Colin Rundel

MA(q)

From last time - a MA(q) process with $\mathbf{w}_t \stackrel{\text{iid}}{\sim} N(0, \sigma_w^2)$,

$$y_t = \delta + w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \dots + \theta_q w_{t-q}$$

has the following properties,

$$\begin{split} E(y_t) &= \delta \\ Var(y_t) &= \gamma(0) = (1 + \theta_1^2 + \theta_2 + \dots + \theta_q^2) \, \sigma_w^2 \\ Cov(y_t, y_{t+h}) &= \gamma(h) = \begin{cases} \sigma_w^2 \sum_{j=0}^{q-|h|} \theta_j \theta_{j+|h|} & \text{if } |h| \leq q \\ 0 & \text{if } |h| > q \end{cases} \end{split}$$

and is stationary for any values of $(\theta_1, \ldots, \theta_q)$

If we let $q \rightarrow \infty$ then process will be stationary if and only if the moving average coefficients (θ 's) are square summable, i.e.

 \sim

$$\sum_{i=1}^\infty \theta_i^2 < \infty$$

which is necessary so that the $Var(y_t) < \infty$ condition is met for weak stationarity.

Sometimes, a slightly stronger condition known as absolute summability, $\sum_{i=1}^{\infty} |\theta_i| < \infty$ is necessary (e.g. for some CLT related asymptotic results).

Invertibility

If an MA(q) process, $y_t = \delta + \theta_q(L)w_t$, can be rewritten as a stationary AR process then the process is said to be invertible.

MA(1) w/ $\delta = 0$ example:

Invertibility vs Stationarity

A MA(q) process is *invertible* if $y_t = \delta + \theta_q(L) w_t$ can be rewritten as an exclusively AR process (of possibly infinite order), i.e. $\phi(L) y_t = \alpha + w_t$.

Conversely, an AR(p) process is *stationary* if $\phi_p(L) y_t = \delta + w_t$ can be rewritten as an exclusively MA process (of possibly infinite order), i.e. $y_t = \delta + \theta(L) w_t$.

So using our results w.r.t. $\phi(L)$ it follows that if all of the roots of $\theta_q(L)$ are outside the complex unit circle then the moving average process is invertible.

Differencing

Difference operator

We will need to define one more notational tool for indicating differencing

$$\Delta \mathbf{y}_t = \mathbf{y}_t - \mathbf{y}_{t-1}$$

Just like the lag operator we will indicate repeated applications of this operator using exponents

$$\begin{aligned} \Delta^2 y_t &= \Delta(\Delta y_t) \\ &= (\Delta y_t) - (\Delta y_{t-1}) \\ &= (y_t - y_{t-1}) - (y_{t-1} - y_{t-2}) \\ &= y_t - 2y_{t-1} + y_{t-2} \end{aligned}$$

Note that Δ can even be expressed in terms of the lag operator L,

$$\Delta^{\rm d} = (1 - L)^{\rm d}$$

Differencing and Stocastic Trend

Using the two component time series model

 $y_t = \mu_t + x_t$

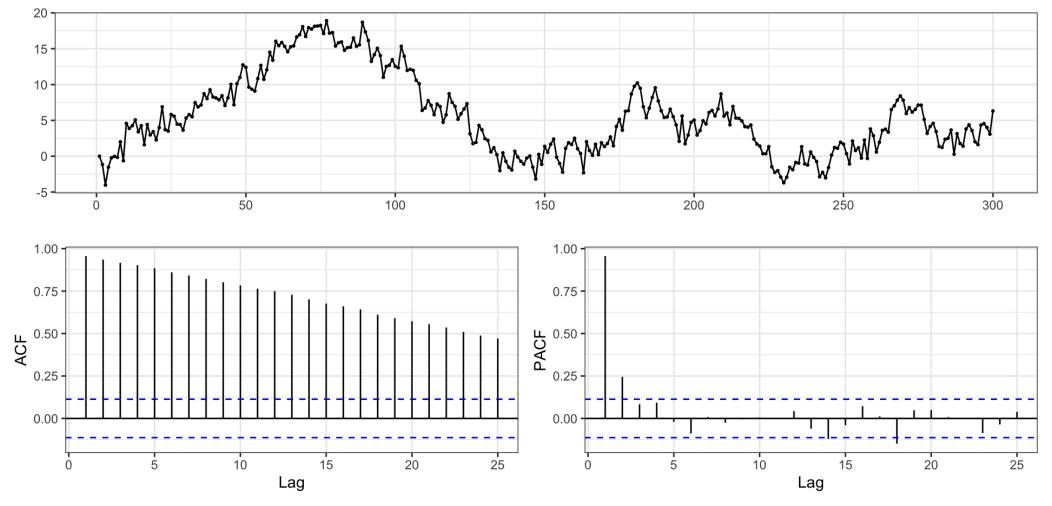
where μ_t is a non-stationary trend component and x_t is a mean zero stationary component.

We have already shown that differencing can address deterministic trend (e.g. $\mu_t = \beta_0 + \beta_1 t$). In fact, if μ_t is any k-th order polynomial of t then $\Delta^k y_t$ is stationary.

Differencing can also address stochastic trend such as in the case where μ_t follows a random walk.

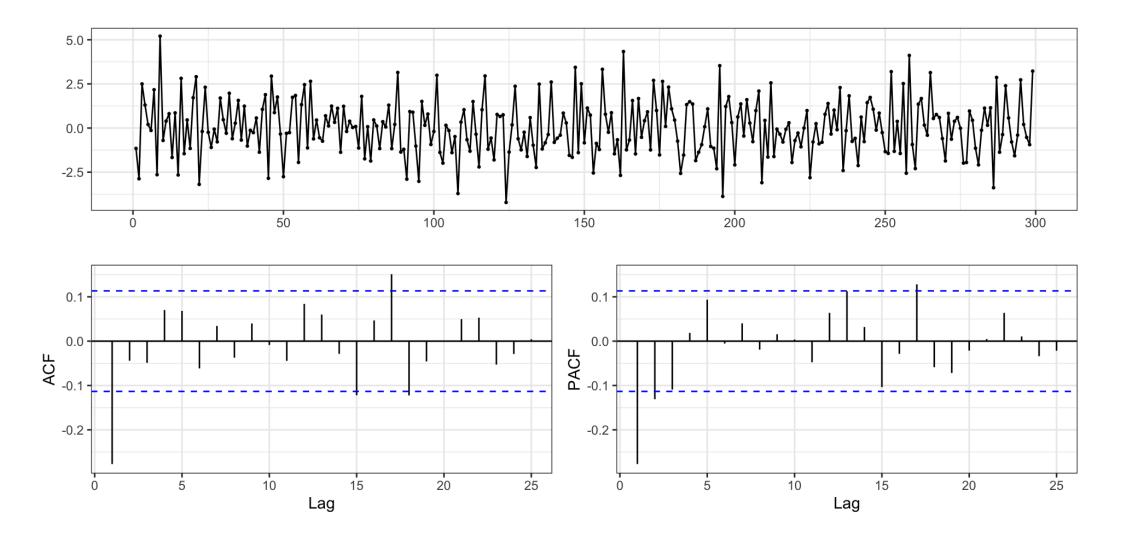
Stochastic trend - Example 1

Let $y_t = \mu_t + w_t$ where w_t is white noise and $\mu_t = \mu_{t-1} + v_t$ with v_t being a stationary process with mean **0**.



Differenced stochastic trend

1 forecast::ggtsdisplay(diff(d\$y))



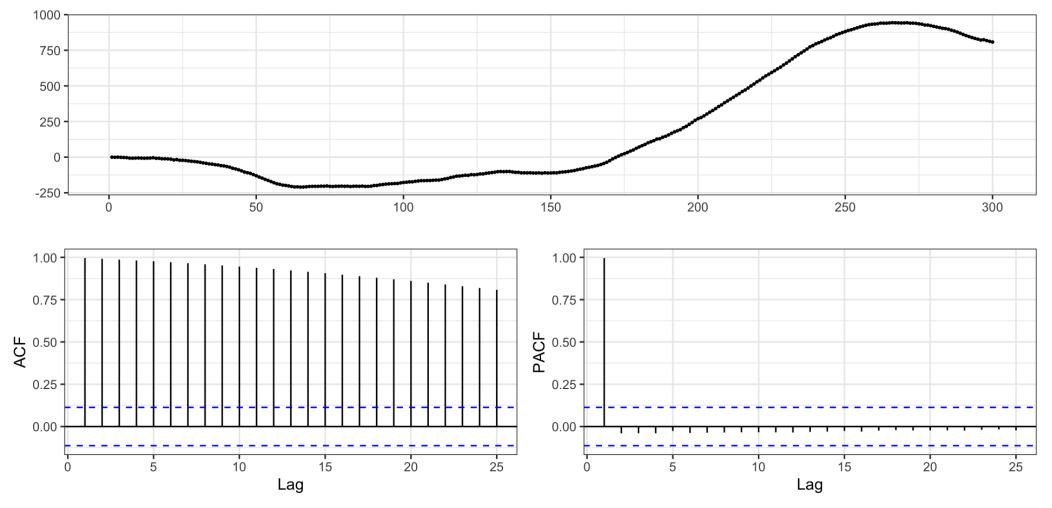
Is y_t stationary?

Difference Stationary?

Is Δy_t stationary?

Stochastic trend - Example 2

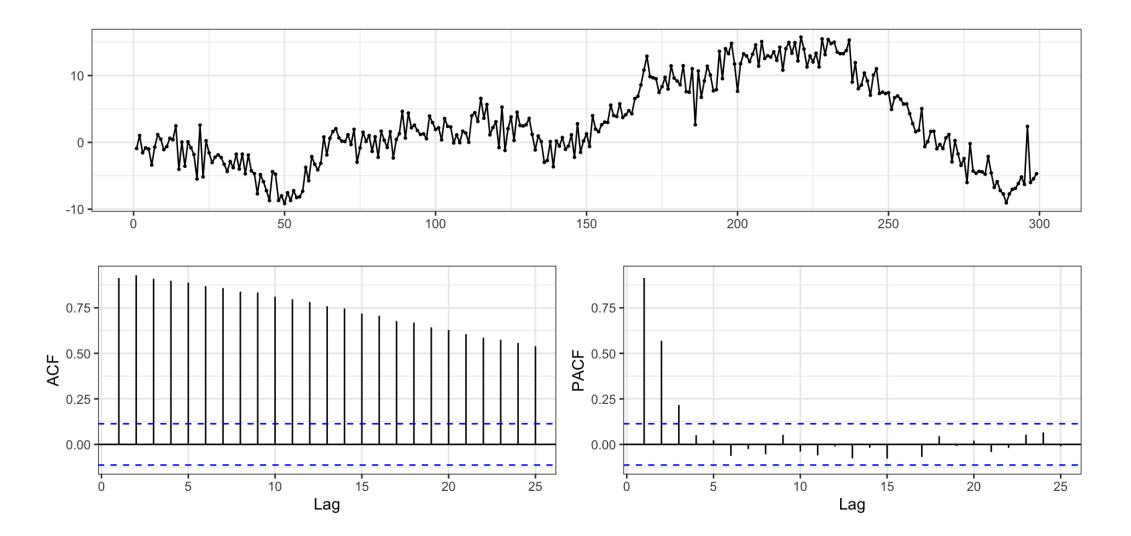
Let $y_t = \mu_t + w_t$ where w_t is white noise and $\mu_t = \mu_{t-1} + v_t$ but now $v_t = v_{t-1} + e_t$ with e_t being stationary.



Sta 344 - Fall 2022

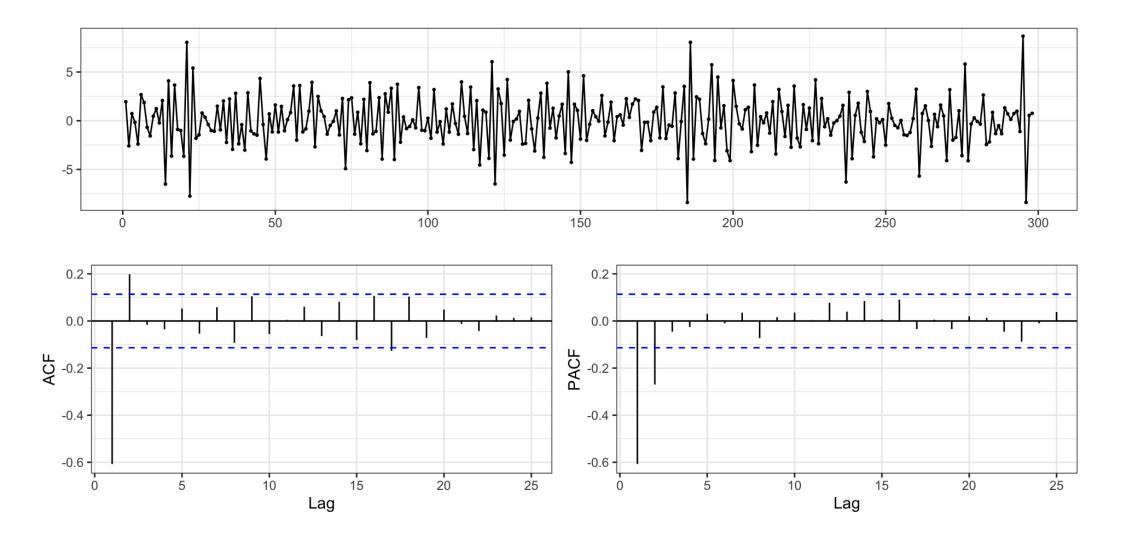
Differenced stochastic trend

1 forecast::ggtsdisplay(diff(d\$y))



Twice differenced stochastic trend

1 forecast::ggtsdisplay(diff(d\$y,differences = 2))



Difference stationary?

Is Δy_t stationary?

2nd order difference stationary?

What about $\Delta^2 y_t$, is it stationary?

ARIMA

ARIMA Models

Autoregressive integrated moving average are just an extension of an ARMA model to include differencing of degree d to y_t before including the autoregressive and moving average components.

ARIMA(p,d,q) :
$$\phi_p(L) \Delta^d y_t = \delta + \theta_q(L) w_t$$

Box-Jenkins approach:

- 1. Transform data if necessary to stabilize variance
- 2. Choose order (p, d, q) of ARIMA model
- 3. Estimate model parameters (δ , ϕ s, and θ s)
- 4. Diagnostics

Using forecast - random walk with drift

Some of R's base timeseries handling is a bit wonky, the forecast package offers some useful alternatives and additional functionality.

```
1 rwd = arima.sim(n=500, model=list(order=c(0,1,0)), mean=0.1)
2
```

3 forecast::Arima(rwd, order = c(0,1,0), include.constant = TRUE)

Series: rwd

```
ARIMA(0,1,0) with drift
```

Coefficients:

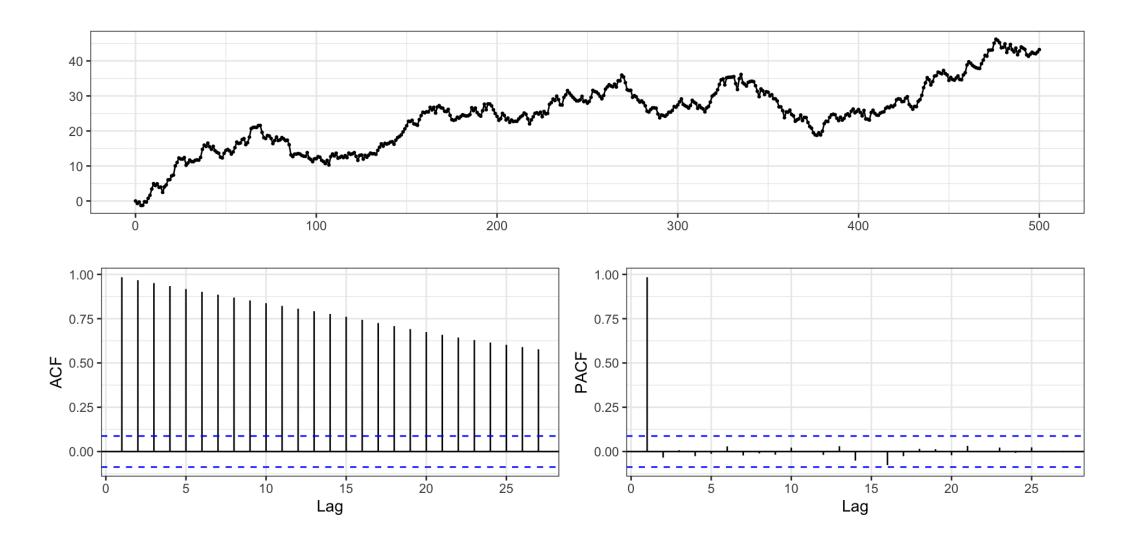
drift

0.0865

s.e. 0.0441

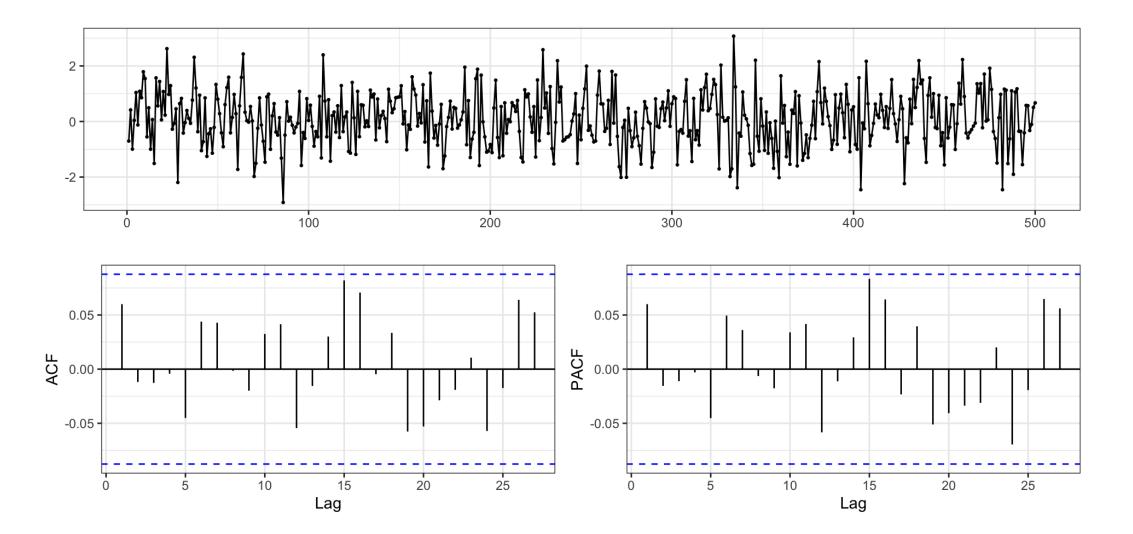
sigma^2 = 0.9735: log likelihood = -702.26
AIC=1408.51 AICc=1408.53 BIC=1416.94

1 forecast::ggtsdisplay(rwd)



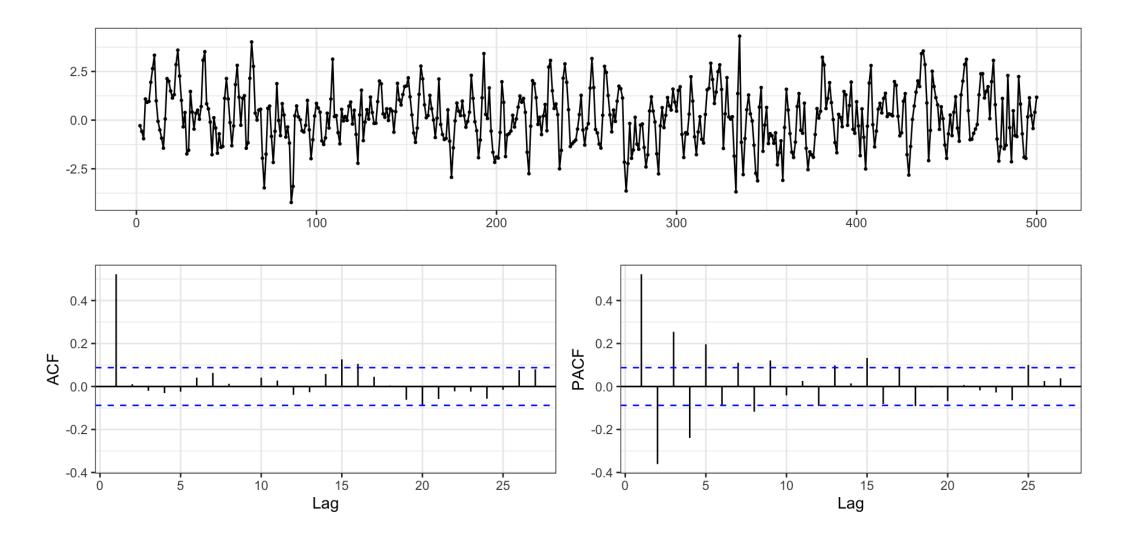
Differencing - Order 1

1 forecast::ggtsdisplay(diff(rwd))



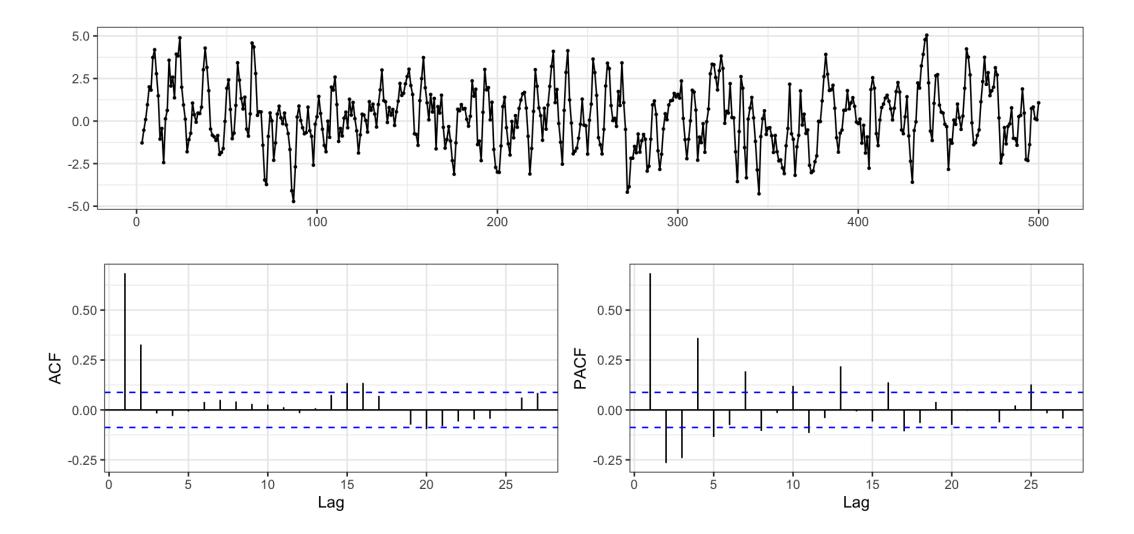
Differencing - Order 2

1 forecast::ggtsdisplay(diff(rwd, 2))

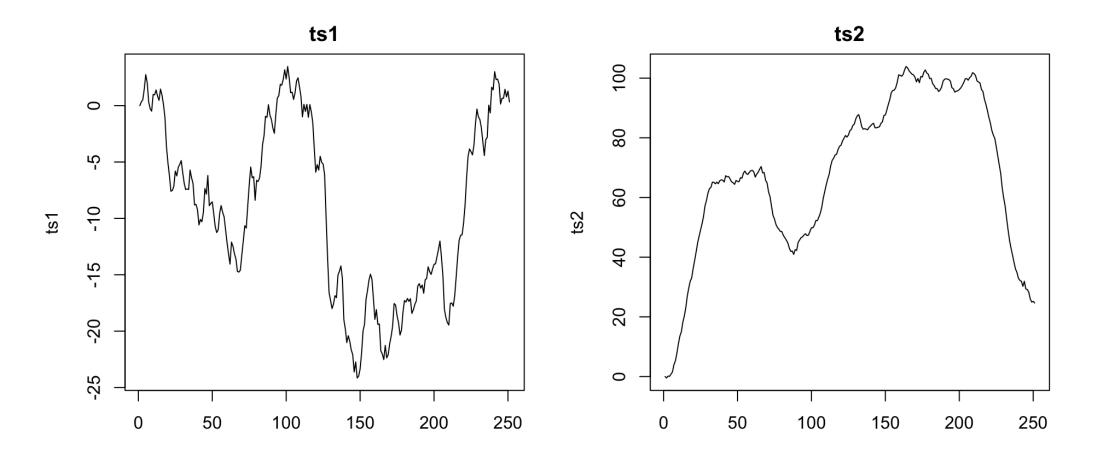


Differencing - Order 3

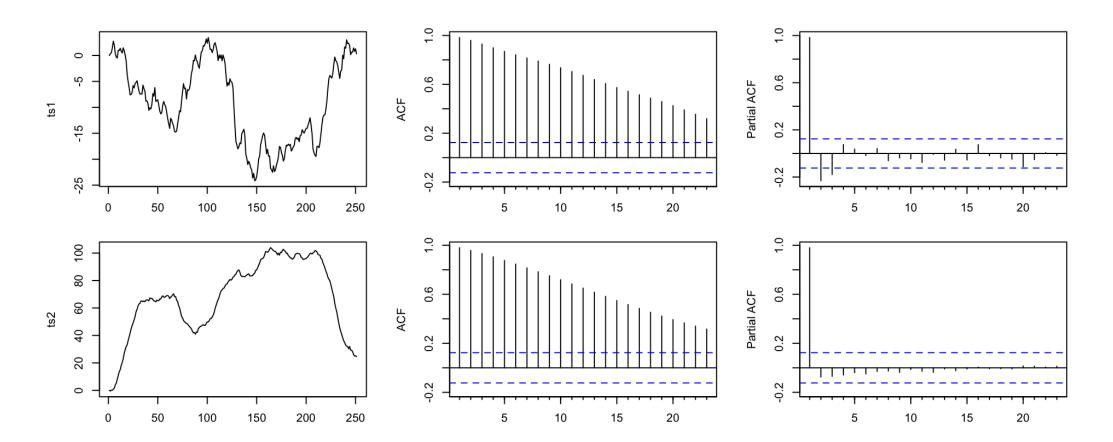
1 forecast::ggtsdisplay(diff(rwd, 3))



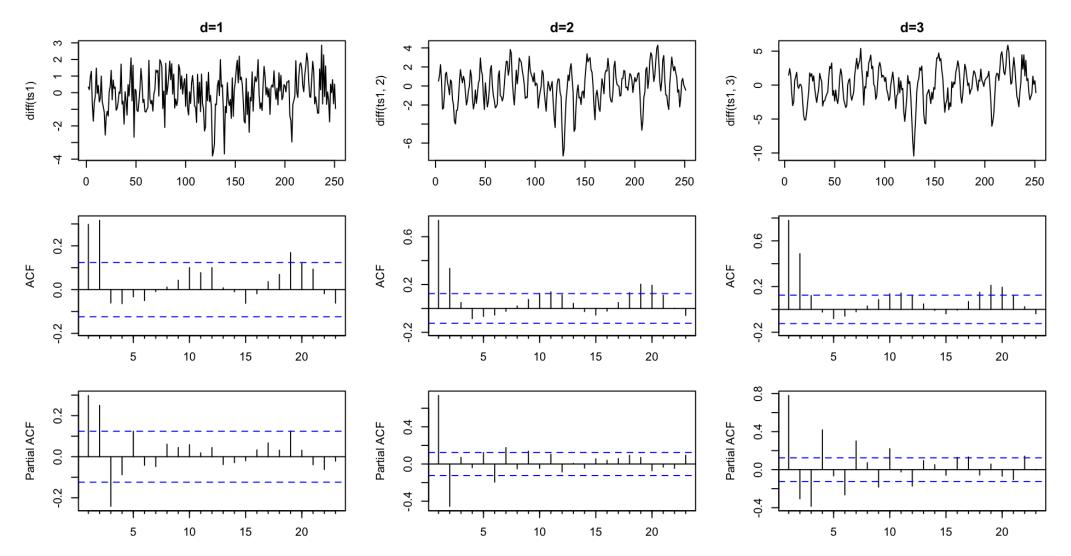
AR or MA?



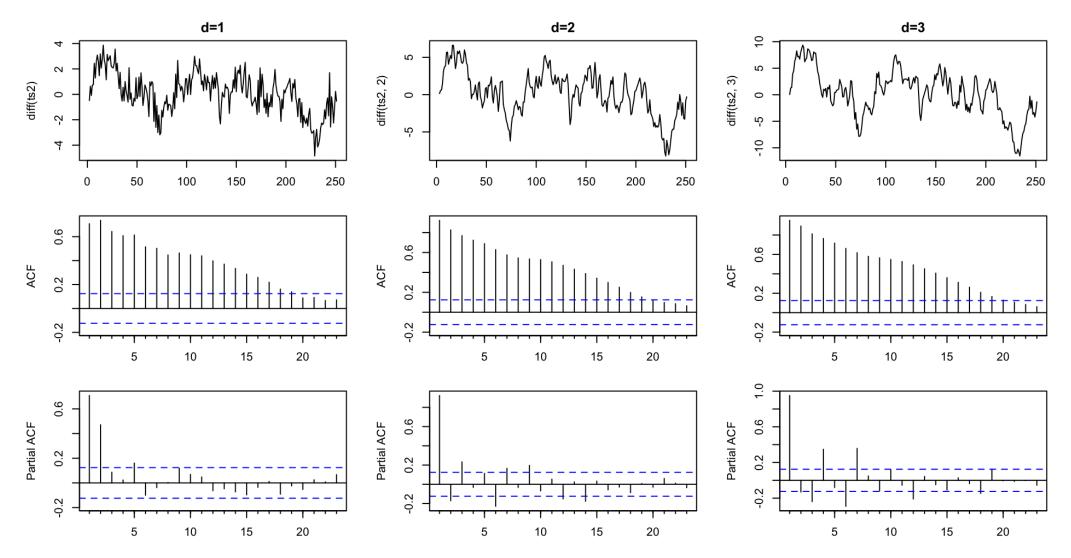
EDA



ts1 - Finding d



ts2 - Finding d



ts1 - Models

р	d	q	aic	aicc	bic
0	1	0	786.60	786.62	790.12
1	1	0	765.38	765.43	772.42
2	1	0	751.40	751.50	761.96
0	1	1	774.29	774.34	781.33
1	1	1	761.59	761.68	772.15
2	1	1	746.66	746.82	760.74
0	1	2	730.34	730.43	740.90
1	1	2	731.92	732.08	746.01
2	1	2	733.62	733.87	751.23

ts2 - Models

р	d	q	aic	aicc	bic
0	1	0	943.49	943.51	947.01
1	1	0	770.79	770.84	777.83
2	1	0	710.48	710.57	721.04
0	1	1	863.89	863.94	870.93
1	1	1	715.95	716.05	726.51
2	1	1	710.16	710.32	724.24
0	1	2	784.75	784.85	795.31
1	1	2	712.58	712.74	726.66
2	1	2	711.80	712.05	729.41

ts1 - final model

Fitted:

```
1 forecast::Arima(ts1, order = c(0,1,2))
```

Series: ts1

ARIMA(0,1,2)

Coefficients:

ma1 ma2 0.2990 0.4700 s.e. 0.0558 0.0583

sigma^2 = 1.068: log likelihood = -362.17
AIC=730.34 AICc=730.43 BIC=740.9

Truth:

 $1 \text{ ts1} = \operatorname{arima.sim}(n=250, \text{ model}=\text{list}(\text{order}=c(0,1,2), \text{ ma}=c(0.4,0.5)))$

ts2 - final model

Fitted:

```
1 forecast::Arima(ts2, order = c(2,1,0))
```

Series: ts2

ARIMA(2,1,0)

Coefficients:

ar1 ar2 0.3730 0.4689 s.e. 0.0556 0.0556

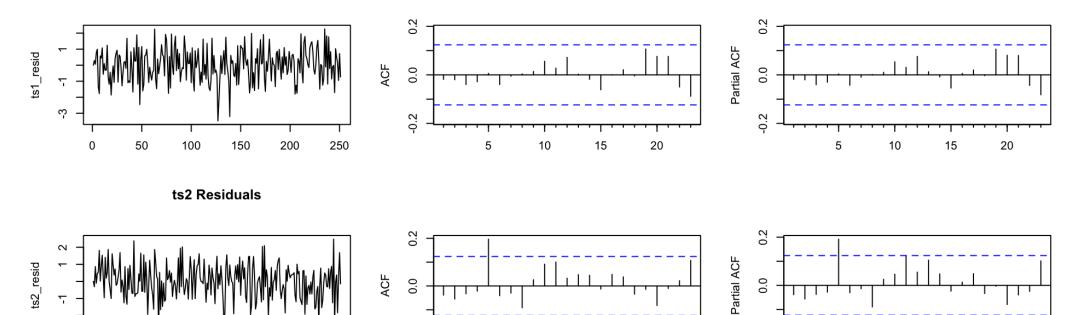
sigma^2 = 0.9835: log likelihood = -352.24
AIC=710.48 AICc=710.57 BIC=721.04

Truth:

1 ts2 = arima.sim(n=250, model=list(order=c(2,1,0), ar=c(0.4,0.5)))

Ϋ́

ts1 Residuals



-0.2

-0.2

Automatic model selection

ts1:	ts2:				
1 forecast::auto.arima(ts1)	<pre>1 forecast::auto.arima(ts2) Series: ts2</pre>				
Series: ts1					
ARIMA(0,1,2)	ARIMA(3,2,2)				
Coefficients:	Coefficients:				
mal ma2	arl ar2 ar3 ma1 ma2				
0.2990 0.4700	-0.556 0.7397 0.4673 -0.0790 -0.8843				
s.e. 0.0558 0.0583	s.e. 0.103 0.0811 0.0643 0.0974 0.0917				
<pre>sigma^2 = 1.068: log likelihood = -362.17 AIC=730.34 AICc=730.43 BIC=740.9</pre>	<pre>sigma^2 = 0.9802: log likelihood = -348.95 AIC=709.91 AICc=710.26 BIC=731.01</pre>				

General Guidance

- 1. Positive autocorrelations out to a large number of lags usually indicates a need for differencing
- 2. Slightly too much or slightly too little differencing can be corrected by adding AR or MA terms respectively.
- 3. A model with no differencing usually includes a constant term, a model with two or more orders (rare) differencing usually does not include a constant term.
- 4. After differencing, if the PACF has a sharp cutoff then consider adding AR terms to the model.
- 5. After differencing, if the ACF has a sharp cutoff then consider adding an MA term to the model.
- 6. It is possible for an AR term and an MA term to cancel each other's effects, so try models with fewer AR terms and fewer MA terms.