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From last time - a  process with ,

has the following properties,

and is stationary for any values of 

MA(q)
MA(q) N(0, )\wt ∼

iid σ2
w

= δ + + + +⋯ +yt wt θ1 wt−1 θ2 wt−2 θq wt−q

E( ) = δyt

Var( ) = γ(0) = (1 + + +⋯ + )yt θ21 θ2 θ2q σ2
w

Cov( , ) = γ(h) = {yt yt+h
σ2
w ∑ q−|h|

j=0 θjθj+|h|

0
if |h| ≤ q
if |h| > q

( , … , )θ1 θq
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If we let  then process will be stationary if and only if the moving
average coefficients (  ’s) are square summable, i.e.

which is necessary so that the  condition is met for weak
stationarity.

Sometimes, a slightly stronger condition known as absolute summability, 
 is necessary (e.g. for some CLT related asymptotic results).

MA(∞)
q → ∞

θ

< ∞∑
i=1

∞

θ2i

Var( ) < ∞yt

| | < ∞∑ ∞
i=1 θi
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Invertibility
If an  process, , can be rewritten as a stationary 

 process then the process is said to be invertible.
MA(q) = δ + (L)yt θq wt

AR



 w/  example:MA(1) δ = 0
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Invertibility vs Stationarity
A  process is invertible if  can be rewritten as an
exclusively  process (of possibly infinite order), i.e.  .

MA(q) = δ + (L)yt θq wt
AR ϕ(L) = α +yt wt

 
Conversely, an  process is stationary if  can be
rewritten as an exclusively  process (of possibly infinite order), i.e. 

.

AR(p) (L) = δ +ϕp yt wt
MA

= δ + θ(L)yt wt

 
So using our results w.r.t.  it follows that if all of the roots of  are
outside the complex unit circle then the moving average process is
invertible.

ϕ(L) (L)θq
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Differencing
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Difference operator
We will need to define one more notational tool for indicating differencing

Δ = −yt yt yt−1

Just like the lag operator we will indicate repeated applications of this
operator using exponents

Δ2yt = Δ(Δ )yt
= (Δ ) − (Δ )yt yt−1
= ( − ) − ( − )yt yt−1 yt−1 yt−2
= − 2 +yt yt−1 yt−2

Note that  can even be expressed in terms of the lag operator ,Δ L

= (1 − LΔd )d
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Differencing and Stocastic Trend
Using the two component time series model

where  is a non-stationary trend component and  is a mean zero
stationary component.

We have already shown that differencing can address deterministic trend
(e.g.  ). In fact, if  is any -th order polynomial of  then 

 is stationary.

Differencing can also address stochastic trend such as in the case where 
 follows a random walk.

= +yt μt xt

μt xt

 

= + tμt β0 β1 μt k t
Δkyt
 

μt
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Stochastic trend - Example 1
Let  where  is white noise and  with  being
a stationary process with mean 0.

= +yt μt wt wt = +μt μt−1 vt vt
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Differenced stochastic trend
forecast::ggtsdisplay(diff(d$y))1
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Stationary?
Is  stationary?yt
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Difference Stationary?
Is  stationary?Δyt
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Stochastic trend - Example 2
Let  where  is white noise and  but now 

 with  being stationary.
= +yt μt wt wt = +μt μt−1 vt

= +vt vt−1 et et
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Differenced stochastic trend
forecast::ggtsdisplay(diff(d$y))1
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Twice differenced stochastic trend
forecast::ggtsdisplay(diff(d$y,differences = 2))1
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Difference stationary?
Is  stationary?Δyt
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2nd order difference stationary?
What about , is it stationary?Δ2yt
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ARIMA
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 Models
Autoregressive integrated moving average are just an extension of an 

 model to include differencing of degree  to  before including
the autoregressive and moving average components.

ARIMA

ARMA d yt

ARIMA(p, d, q) : (L)ϕp Δd yt = δ + (L)θq wt

Box-Jenkins approach:

1. Transform data if necessary to stabilize variance

2. Choose order ( , , ) of ARIMA model

3. Estimate model parameters ( , s, and s)

4. Diagnostics

 

p d q
δ ϕ θ
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Using forecast - random walk with drift
Some of R’s base timeseries handling is a bit wonky, the forecast package
offers some useful alternatives and additional functionality.







rwd = arima.sim(n=500, model=list(order=c(0,1,0)), mean=0.1) 1

2

forecast::Arima(rwd, order = c(0,1,0), include.constant = TRUE)3

Series: rwd 


ARIMA(0,1,0) with drift 





Coefficients:


       drift


      0.0865


s.e.  0.0441





sigma^2 = 0.9735:  log likelihood = -702.26


AIC=1408.51   AICc=1408.53   BIC=1416.94
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EDA
forecast::ggtsdisplay(rwd)1
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Differencing - Order 1
forecast::ggtsdisplay(diff(rwd))1
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Differencing - Order 2
forecast::ggtsdisplay(diff(rwd, 2))1
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Differencing - Order 3
forecast::ggtsdisplay(diff(rwd, 3))1
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AR or MA?
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EDA
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ts1 - Finding d
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ts2 - Finding d
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ts1 - Models
p d q aic aicc bic

0 1 0 786.60 786.62 790.12

1 1 0 765.38 765.43 772.42

2 1 0 751.40 751.50 761.96

0 1 1 774.29 774.34 781.33

1 1 1 761.59 761.68 772.15

2 1 1 746.66 746.82 760.74

0 1 2 730.34 730.43 740.90

1 1 2 731.92 732.08 746.01

2 1 2 733.62 733.87 751.23
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ts2 - Models
p d q aic aicc bic

0 1 0 943.49 943.51 947.01

1 1 0 770.79 770.84 777.83

2 1 0 710.48 710.57 721.04

0 1 1 863.89 863.94 870.93

1 1 1 715.95 716.05 726.51

2 1 1 710.16 710.32 724.24

0 1 2 784.75 784.85 795.31

1 1 2 712.58 712.74 726.66

2 1 2 711.80 712.05 729.41
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ts1 - final model
Fitted:

Truth:

forecast::Arima(ts1, order = c(0,1,2))1

Series: ts1 


ARIMA(0,1,2) 





Coefficients:


         ma1     ma2


      0.2990  0.4700


s.e.  0.0558  0.0583





sigma^2 = 1.068:  log likelihood = -362.17


AIC=730.34   AICc=730.43   BIC=740.9

ts1 = arima.sim(n=250, model=list(order=c(0,1,2), ma=c(0.4,0.5))) 1
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ts2 - final model
Fitted:

Truth:

forecast::Arima(ts2, order = c(2,1,0))1

Series: ts2 


ARIMA(2,1,0) 





Coefficients:


         ar1     ar2


      0.3730  0.4689


s.e.  0.0556  0.0556





sigma^2 = 0.9835:  log likelihood = -352.24


AIC=710.48   AICc=710.57   BIC=721.04

ts2 = arima.sim(n=250, model=list(order=c(2,1,0), ar=c(0.4,0.5))) 1
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Residuals

37Sta 344 - Fall 2022



Automatic model selection
ts1: ts2:

forecast::auto.arima(ts1)1

Series: ts1 

ARIMA(0,1,2) 





Coefficients:


         ma1     ma2


      0.2990  0.4700


s.e.  0.0558  0.0583





sigma^2 = 1.068:  log likelihood = -362.17


AIC=730.34   AICc=730.43   BIC=740.9

forecast::auto.arima(ts2)1

Series: ts2 

ARIMA(3,2,2) 





Coefficients:


         ar1     ar2     ar3      ma1      ma2


      -0.556  0.7397  0.4673  -0.0790  -0.8843


s.e.   0.103  0.0811  0.0643   0.0974   0.0917





sigma^2 = 0.9802:  log likelihood = -348.95


AIC=709.91   AICc=710.26   BIC=731.01
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General Guidance
1. Positive autocorrelations out to a large number of lags usually indicates a need

for differencing

2. Slightly too much or slightly too little differencing can be corrected by adding AR
or MA terms respectively.

3. A model with no differencing usually includes a constant term, a model with two
or more orders (rare) differencing usually does not include a constant term.

4. After differencing, if the PACF has a sharp cutoff then consider adding AR terms
to the model.

5. After differencing, if the ACF has a sharp cutoff then consider adding an MA
term to the model.

6. It is possible for an AR term and an MA term to cancel each other’s effects, so
try models with fewer AR terms and fewer MA terms.

Based on guidance in Robert Nau’s notes on  - Chapter 5regression and time series analysis
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https://people.duke.edu/~rnau/411home.htm

