ARIMA Models

Lecture 09

Dr. Colin Rundel

$MA(q)$

From last time - a $MA(q)$ process with $\forall w_t \stackrel{\text{nd}}{\sim} N(0, \sigma_w^2)$, iid σ_w^2 $\stackrel{\sim}{W}$

$$
y_t = \delta + w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \cdots + \theta_q w_{t-q}
$$

has the following properties,

$$
E(y_t) = \delta
$$

$$
Var(y_t) = \gamma(0) = (1 + \theta_1^2 + \theta_2 + \dots + \theta_q^2) \sigma_w^2
$$

$$
Cov(y_t, y_{t+h}) = \gamma(h) = \begin{cases} \sigma_w^2 \sum_{j=0}^{q-|h|} \theta_j \theta_{j+|h|} & \text{if } |h| \le q\\ 0 & \text{if } |h| > q \end{cases}
$$

and is stationary for any values of $(\theta_1,\ldots,\theta_q)$

If we let $q \rightarrow \infty$ then process will be stationary if and only if the moving average coefficients (θ 's) are square summable, i.e.

$$
\sum_{i=1}^\infty \theta_i^2 < \infty
$$

which is necessary so that the $\rm{Var}(y_t)$ $<$ ∞ condition is met for weak stationarity.

Sometimes, a slightly stronger condition known as absolute summability, $\sum_{i=1}^{\infty}$ $|\theta_i| < \infty$ is necessary (e.g. for some CLT related asymptotic results).

Invertibility

If an $MA(q)$ process, $y_t = \delta + \theta_q(L)w_t$, can be rewritten as a stationary AR process then the process is said to be invertible.

 $MA(1)$ w/ $\delta = 0$ example:

Invertibility vs Stationarity

A $MA(q)$ process is *invertible* if $y_t = \delta + \theta_q(L) w_t$ can be rewritten as an exclusively AR process (of possibly infinite order), i.e. $\phi(L)$ $y_t = \alpha + w_t$.

Conversely, an AR(p) process is *stationary* if $\phi_p(L)$ $y_t = \delta + w_t$ can be rewritten as an exclusively MA process (of possibly infinite order), i.e. $y_t = \delta + \theta(L) w_t.$

So using our results w.r.t. $\phi(L)$ it follows that if all of the roots of $\theta_{\rm q}(L)$ are outside the complex unit circle then the moving average process is invertible.

Differencing

Difference operator

We will need to define one more notational tool for indicating differencing

$$
\Delta y_t = y_t - y_{t-1}
$$

Just like the lag operator we will indicate repeated applications of this operator using exponents

$$
\Delta^{2} y_{t} = \Delta(\Delta y_{t})
$$

= $(\Delta y_{t}) - (\Delta y_{t-1})$
= $(y_{t} - y_{t-1}) - (y_{t-1} - y_{t-2})$
= $y_{t} - 2y_{t-1} + y_{t-2}$

Note that Δ can even be expressed in terms of the lag operator L,

$$
\Delta^d = (1 - L)^d
$$

Differencing and Stocastic Trend

Using the two component time series model

 $y_t = \mu_t + x_t$

where $\mu_{\rm t}$ is a non-stationary trend component and ${\rm x_{\rm t}}$ is a mean zero stationary component.

We have already shown that differencing can address deterministic trend (e.g. $\mu_{\rm t} = \beta_0 + \beta_1$ t). In fact, if $\mu_{\rm t}$ is any ${\rm k}$ -th order polynomial of ${\rm t}$ then $\Delta^{\rm k}$ y $_{\rm t}$ is stationary.

Differencing can also address stochastic trend such as in the case where μ_t follows a random walk.

Stochastic trend - Example 1

Let $y_t = \mu_t + w_t$ where w_t is white noise and $\mu_t = \mu_{t-1} + v_t$ with v_t being a stationary process with mean 0.

Differenced stochastic trend

forecast::ggtsdisplay(diff(d\$y)) $\mathbf 1$

Is y_t stationary?

Difference Stationary?

Is Δy_t stationary?

Stochastic trend - Example 2

Let $y_t = \mu_t + w_t$ where w_t is white noise and $\mu_t = \mu_{t-1} + v_t$ but now $v_t = v_{t-1} + e_t$ with e_t being stationary.

Differenced stochastic trend

forecast::ggtsdisplay(diff(d\$y)) $\mathbf{1}$

Twice differenced stochastic trend

forecast::ggtsdisplay(diff(d\$y,differences = 2)) \perp

Difference stationary?

Is Δy_t stationary?

2nd order difference stationary?

What about $\Delta^2 y_t$, is it stationary?

ARIMA

ARIMA Models

Autoregressive integrated moving average are just an extension of an $ARMA$ model to include differencing of degree d to y_t before including the autoregressive and moving average components.

$$
ARIMA(p, d, q): \qquad \phi_p(L) \Delta^d y_t = \delta + \theta_q(L) w_t
$$

Box-Jenkins approach:

- 1. Transform data if necessary to stabilize variance
- 2. Choose order (p, d, q) of ARIMA model
- 3. Estimate model parameters (δ , ϕ s, and θ s)
- 4. Diagnostics

Using **forecast** - random walk with drift

Some of R's base timeseries handling is a bit wonky, the forecast package offers some useful alternatives and additional functionality.

```
1 rwd = \arima \cdot \nsim(n=500, \text{model}=list(\text{order}=c(0,1,0)), mean=0.1)2
```
[3](#page-20-2) forecast::Arima(rwd, order = $c(0,1,0)$, include.constant = TRUE)

Series: rwd

ARIMA(0,1,0) with drift

Coefficients:

drift

0.0865

s.e. 0.0441

sigma^2 = 0.9735 : log likelihood = -702.26 AIC=1408.51 AICc=1408.53 BIC=1416.94

1 forecast::ggtsdisplay(rwd)

Differencing - Order 1

forecast::ggtsdisplay(diff(rwd)) $\mathbf 1$

Differencing - Order 2

forecast::ggtsdisplay(diff(rwd, 2)) $\mathbf{1}$

Differencing - Order 3

forecast::ggtsdisplay(diff(rwd, 3)) $\mathbf{1}$

AR or MA?

EDA

ts1 - Finding d

ts2 - Finding d

ts1 - Models

ts2 - Models

ts1 - final model

Fitted:

```
1 forecast::Arima(ts1, order = c(0,1,2))
```
Series: ts1

ARIMA(0,1,2)

Coefficients:

ma1 ma2 0.2990 0.4700 s.e. 0.0558 0.0583

sigma^2 = 1.068 : log likelihood = -362.17 AIC=730.34 AICc=730.43 BIC=740.9

Truth:

[1](#page-31-1) ts1 = $\arima.sim(n=250, model=list(order=c(0,1,2), macc(0.4,0.5)))$

ts2 - final model

Fitted:

```
1 forecast::Arima(ts2, order = c(2,1,0))
```
Series: ts2

ARIMA(2,1,0)

Coefficients:

ar1 ar2 0.3730 0.4689 s.e. 0.0556 0.0556

sigma^2 = 0.9835 : log likelihood = -352.24 AIC=710.48 AICc=710.57 BIC=721.04

Truth:

[1](#page-32-1) ts2 = $\arima.sim(n=250, model=list(order=c(2,1,0), ar=c(0.4,0.5)))$

ts1 Residuals

Automatic model selection

General Guidance

- 1. Positive autocorrelations out to a large number of lags usually indicates a need for differencing
- 2. Slightly too much or slightly too little differencing can be corrected by adding AR or MA terms respectively.
- 3. A model with no differencing usually includes a constant term, a model with two or more orders (rare) differencing usually does not include a constant term.
- 4. After differencing, if the PACF has a sharp cutoff then consider adding AR terms to the model.
- 5. After differencing, if the ACF has a sharp cutoff then consider adding an MA term to the model.
- 6. It is possible for an AR term and an MA term to cancel each other's effects, so try models with fewer AR terms and fewer MA terms.