# A tibble: 696 × 4
# Groups: model [2]
model .threshold specificity sensitivity
<chr> <dbl> <dbl> <dbl>
1 Full -Inf 0 1
2 Full 0.000132 0 1
3 Full 0.000425 0.00204 1
4 Full 0.000453 0.00407 1
5 Full 0.000755 0.00611 1
6 Full 0.000761 0.00815 1
7 Full 0.000792 0.0102 1
8 Full 0.00108 0.0122 1
9 Full 0.00126 0.0143 1
10 Full 0.00146 0.0163 1
# … with 686 more rows
# A tibble: 2 × 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 Full roc_auc binary 0.875
2 SegSumT roc_auc binary 0.806
A model that randomly assigns classes to the data is expected to achieve an AUC of 0.5 (dotted line on the previous plot) while a perfect model would achieve an AUC of 1.
# A tibble: 694 × 4
# Groups: model [2]
model .threshold recall precision
<chr> <dbl> <dbl> <dbl>
1 Full Inf 0 1
2 Full 0.873 0 0
3 Full 0.866 0.00787 0.5
4 Full 0.859 0.0157 0.667
5 Full 0.845 0.0236 0.75
6 Full 0.842 0.0236 0.6
7 Full 0.830 0.0315 0.667
8 Full 0.829 0.0394 0.714
9 Full 0.823 0.0394 0.625
10 Full 0.816 0.0394 0.556
# … with 684 more rows
# A tibble: 2 × 4
model .metric .estimator .estimate
<chr> <chr> <chr> <dbl>
1 Full pr_auc binary 0.583
2 SegSumT pr_auc binary 0.447
A model that randomly assigns classes to the data is expected to achieve an PR-AUC of # successes / n while a perfect model would achieve an AUC of 1 (a point at a coordinate of (1,1)).